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Abstract

Ž .The exponential correlation associative memory ECAM is a recurrent neural network model which has large storage
capacity and is particularly suited for VLSI hardware implementation. Our aim in this paper is to show how the ECAM
model can be entirely derived within a Bayesian framework, thereby providing more insight into the behaviour of this
algorithm. The framework for our study is a novel relaxation method which involves direct probabilistic modelling of the
pattern corruption mechanism. The parameter of this model is the memoryless probability of error on nodes of the network.
This bit-error probability is not only important for the interpretation of the ECAM model, but allows also us to understand
some more general properties of Bayesian pattern reconstruction by relaxation. In addition, we demonstrate that both the
Hopfield memory and the Boolean network model developed by Aleksander can be regarded as limits of the presented
relaxation approach with precise physical meaning in terms of this parameter. To study the dynamical behaviour of our
relaxation model, we use the Hamming distance picture of Kanerva which allows us to understand how the bit-error
probability evolves during the relaxation process. We also derive a parameter-free expression for the storage capacity of the
model which, like a previous result of Chiueh and Goodman, scales exponentially with the number of nodes in the network.
q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

ŽSince Hopfield’s influential work Hopfield,
.1982 , there has been an explosion of interest in the
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study of neural network models of associative mem-
ory. These are parallel computational networks in
which idealised versions of corrupted patterns are
recalled by locally updating individual nodes in the
network to optimise a global cost function. The
original model proposed by Hopfield, however, was
soon recognised to have severe limitations associated

Žwith its restricted storage capacity McEliece et al.,
.1987 , and this has then motivated a number of
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investigators to develop alternative memory models
in an attempt to overcome this fundamental draw-
back. One of the most successful such attempts has
recently been reported by Chiueh and Goodman
Ž .1991 who developed an exponential correlation

Ž .associative memory ECAM model which not only
turns out to have large storage capacity, but can also

Žbe easily implemented in VLSI hardware Chiueh
.and Goodman, 1990, 1991 . The model has also

Žbeen recently extended to include bidirectional Jeng
et al., 1990; Wang and Don, 1995; Wang and Lee,

. Ž .1995 , multi-valued Chiueh and Tsai, 1993 , and
Ž .real-valued memories Geva and Sitte, 1991 .

Viewed as systems that achieve global configura-
tional optimisation via local iterative computations,
these associative memories have many features in
common with relaxation algorithms widely em-
ployed in the field of computer vision and pattern

Žrecognition Hummel and Zucker, 1983; Geman and
Geman, 1984; Hancock and Kittler, 1990; Wilson

.and Hancock, 1997 . Our aim in this paper is to
demonstrate not only that there is a strong concep-
tual similarity between the two approaches, but that
the ECAM and the Hopfield memories can be re-
garded as particular instances of discrete relaxation
ŽHancock and Kittler, 1990; Wilson and Hancock,

.1997 , providing them with a direct Bayesian inter-
pretation. The analysis provides an empirical under-
standing of the dynamical properties of these models.

Basic to the methodology described in this paper
is the direct modelling of the pattern corruption

Žmechanism which is objective yet simple Hancock
.and Kittler, 1990; Wilson and Hancock, 1997 . We

assume that each node in the network is subject to
memoryless corruption, and adopt as our criterion for
global labelling the joint probability of the binary
node configuration on the network. This turns out to
be a compound exponential function of the Ham-
ming distances to the idealised stored patterns, the
parameter of these exponentials being the memory-
less probability of bit-errors acting on the binary
patterns. Node updating takes place so as to perform
gradient ascent on the global configurational proba-
bility. The ECAM, too, implements an exponential
update rule, and we will show how our relaxation
scheme is identical to the ECAM model when the
base of its exponentials is chosen as a certain func-
tion of the bit-error probability. This corresponds

also to the best possible choice in terms of storage
capacity. Moreover, when the bit-error probability

1approaches , our relaxation model becomes equiva-2

lent to the Hopfield update rule. Conversely, when
the bit-error probability becomes asymptotically
small, the relaxation approach implements a type of
look-up operation, selecting the global pattern of
minimum Hamming distance. This is similar in func-
tion to the Boolean network proposed by Aleksander
Ž .1989 and extensively analysed by Wong and Sher-

Ž .rington 1989 .
In order to understand some of the dynamical

properties of our discrete relaxation model of asso-
ciative memory, we use the Hamming distance pic-

Ž .ture of Kanerva 1988 . This model allows us to
predict how the bit-error probability evolves as the
corrupted patterns undergo iterative associative re-
call. In particular, the fixed points of the bit-error
probability play a crucial role in limiting effective
pattern recovery. If the bit-error probability exceeds
a certain value termed the ‘‘critical distance’’ by
Kanerva, then iterations only result in disruption of
memory patterns. Moreover, if the critical distance
altogether vanishes then the memory capacity of the
network has been exceeded. We use this latter prop-
erty to show that the storage capacity of our memory
is exponential with the number of nodes. This is

Ž .exactly the finding of Chiueh and Goodman 1991 .
However, our result for the storage capacity depends
only on the number of nodes in the network, i.e., the
length of memory patterns. This contrasts with the
theoretical result of Chiueh and Goodman which
relates the storage capacity to a threshold parameter
which is effectively a trade-off between storage ca-
pacity and bit-error probability. Furthermore, it is
interesting to note that our Bayesian framework nat-
urally leads us to a choice of the exponential base
that gives the ultimate upper bound for the asymp-
totic capacity of an associative memory.

To summarize, the novel contributions of this
paper are twofold. The first contribution is to provide
a Bayesian framework which furnishes a unifying
viewpoint for understanding of a number of different
binary associative memories. This framework allows
us to identify the Aleksander, Hopfield and ECAM
models as specific instances based on the prevailing
value of the bit-error probability. The second contri-
bution is to exploit the Kanerva picture to compute
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the limiting storage capacity of such networks. This
allows us to relate the storage capacity of the ECAM
to the length of the stored patterns. The main conclu-
sion is that the storage capacity of the ECAM is
exponential.

The outline of this paper is as follows. In Section
2 we briefly describe the ECAM model as intro-

Ž .duced in Chiueh and Goodman, 1991 . Section 3
develops a model for the global configurational
probability and derives the ECAM entirely within a
Bayesian framework, thereby making explicit the
relation between discrete relaxation and the ECAM
model. In Section 4 we additionally describe the
relationship between the relaxation approach, the
Hopfield memory and the Aleksander Boolean net-
work. Following Kanerva, Section 5 presents a model
of the underlying pattern space which allows us to
provide an interpretation for these relationships; it
also allows us to understand some of the properties
of Bayesian pattern reconstruction by configurational
relaxation. Finally, in Section 6 we present our con-
clusions.

2. Exponential correlation associative memories

The ECAM is an instance of a more general
associative memory model which Chiueh and Good-

Ž .man Chiueh and Goodman 1991 called the recur-
Ž .sive correlation associative memory RCAM . The

network is composed of N computational nodes, and
at any particular stage of updating each node will be

� 4in one of the binary states denoted by V' y1,1 .
The particular realisation of the labelling of the node
indexed j is denoted by s . With this notation, thej

global state of the network is represented by the
�configuration of binary values Ss s gV N jsj

41, . . . , N .
Now, suppose that we have access to a set of

training patterns. Typically, these would be configu-
rations of binary labels which we want to recover
from an initial inconsistent state of the network.
Assume that there are Z such global patterns denoted

m � m 4by L s l gV N js1, . . . , N . According to thisj

notation, m is the pattern index and l m is the binaryj

value assigned to the site indexed j by the mth
training pattern.

The dynamical behaviour of an RCAM is gov-
erned by the following updating rule

Z N
m ms ssgn l f s l 1Ž .Ý Ýj j i i½ 5ž /

ms1 is1

Ž .for all js1, . . . , N, where f P is an appropriate
Ž .weighting function. Chiueh and Goodman 1991

showed that the dynamical system described by Eq.
Ž .1 is asymptotically stable both in the asynchronous
and synchronous update modes, provided that the
weighting function f is continuous and monotone

w xnondecreasing over the interval yN, N . This was
proved by showing that the system has an associated

Ž .Liapunov or ‘‘energy’’ function that governs its
dynamical behaviour. In addition, Chiueh and Good-

Ž .man 1991 showed how some known associative
memory models can be viewed as a special case of
the RCAM by just choosing a suitable weighting
function. For example, if f is chosen to be the
identity function, i.e.,

f x sx , 2Ž . Ž .

then the model becomes essentially identical to the
Ž .original Hopfield memory Hopfield, 1982 , with the

weights initialised by the Hebb rule. Of particular
interest is the case when the weighting function has
an exponential form, i.e.,

f x sa x , 3Ž . Ž .

where a is a predetermined constant greater than
unity. This class of memories constitutes the ECAM
original model. This was shown to have large storage
capacity and turns out to be especially suited for

ŽVLSI implementation Chiueh and Goodman, 1990,
.1991 .

3. Bayesian derivation of the ECAM

We commence our analysis of the ECAM model
by considering an arbitrary input pattern S. The basic
information relevant to the ‘‘consistency’’ of the
configuration S is conveyed by the set of Hamming
distances to the prototype patterns L m, ms1, . . . ,Z.
With the binary node variables defined in Section 2,
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the Hamming distance to the prototype pattern in-
dexed m can be written as

N1
mH s Ny s l . 4Ž .Ým i iž /2 is1

The configurational relaxation procedure is based on
maximising the joint probability of the binary label

Ž .configuration, i.e., P S . It is therefore necessary to
Ž .find a way of enumerating P S when the label

configuration is highly inconsistent, i.e., when there
are no prototype patterns for which the Hamming
distance is zero. The approach is to adopt a Bayesian
viewpoint in which it is assumed that only prototype
patterns are legal and have uniform non-zero a priori

Ž m.probabilities of occurrence P L . Other configura-
tions do not occur a priori but are the corrupted
realisations of the prototype patterns. This idea is
realised by applying the axiomatic property of joint

Ž .probability to expand P S over the space of consis-
tent configurations

Z
m m<P S s P S L P L . 5Ž . Ž . Ž . Ž .Ý

ms1

To develop this idea into a useful update rule
requires a model of the bit corruption process, that is
of the conditional probabilities of the inconsistent
configurations given the Z possible prototypes
Ž < m.P S L . We adopt a very simple viewpoint: bit-er-

rors are assumed to be memoryless and to occur with
1uniform probability p( .2

The first consequence of the assumed absence of
memory is that the errors are independent. As a
result we can factorise the conditional probabilities
over the individual nodes in the network, i.e.,

N
m m< <P S L s P s l . 6Ž . Ž .Ž .Ł i i

is1

Our next step is to propose a model for the bit
corruption mechanism at each node in the network.
Again, taking recourse to the memoryless assump-
tion, the probability of error on individual nodes is
independent of the class of label. This leads us to the
following assignment of probability

1yp if s sl m ,i im<P s l s 7Ž .Ž .i i ½ p otherwise.

Ž . Ž .The model components given in Eqs. 6 and 7
Ž .naturally lead to the following expression for P S

in terms of the set of Hamming distances to the
prototype patterns

Zb
HmP S s a , 8Ž . Ž .Ý

Z
ms1

Ž . Ž .Nwhere aspr 1yp and bs 1yp . We can
re-write the above expression for the configurational
probability in terms of the more familiar exponential
function

Zb 1
P S s exp yH ln . 9Ž . Ž .Ý mž /Z a

ms1

Expressed in this form it is tempting to draw an
analogy between our probability criterion and the
exponential Gibbs distributions employed in the
stochastic relaxation approach of Geman and Geman
Ž .1984 . It can also be regarded as a symbolic ana-
logue of the functional used in the deformable tem-

Ž .plate models of Durbin et al. 1989 and of Yuille
Ž .1990 . An extensive experimental comparison be-
tween the more general exponential cost function

Ž .described by Hancock and Kittler 1990 and Markov
random fields has recently been reported by Milun

Ž .and Sher 1993 .
According to our picture, the Hamming distance

plays the role of configurational potential while the
bit-error probability plays the role of the controlling
temperature of the Gibbs distribution. In fact the
Gibbsian temperature, T , is given by

1
Ts . 10Ž .

ln 1raŽ .

Conditions of large error probability therefore corre-
spond to those of high temperature while conditions
of small error probability correspond to low tempera-
ture. In Section 5 we will discuss some of the issues
related to the control of the bit-error probability in
configurational relaxation, presenting an analytical
model describing its behaviour.

Our aim in making node updates is to locate an
optimum value of the configurational probability
Ž .P S . The optimisation procedure is based on a

conventional gradient ascent approach. When rather
than being binary values the node variables are
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w xreal-valued quantities in the range y1,1 , the gradi-
Ž .ent of P S is

ZE P S b E HŽ . mHms ln a a , 11Ž .Ý
E s Z E sj jms1

Ž .where, from Eq. 4 , we have

E H 1m msy l .jE s 2j

IIn the case of binary values, the update rule for
gradient ascent becomes

Z
m Hms ssgn l a . 12Ž .Ýj j½ 5

ms1

Ž .Now, observe that from Eq. 4 this update rule is
equivalent to

NZ 1
mm y s li iÝs ssgn l a 13Ž .2Ýj j is1½ 5

ms1

which is identical to the ECAM update rule defined
Ž . Ž .by Eqs. 1 and 3 when the base of exponentiation

a is taken to be ay1r2 or, in other words, when

1
1yp 2

as . 14Ž .ž /p

Note that under the assumption that the error proba-
1bility p is less than , the base constant a is greater2

than unity as required by the ECAM model. This
provides, therefore, a direct Bayesian interpretation
for the ECAM model. When the base of the expo-

Ž .nentials a is chosen as in Eq. 14 , the ECAM can
be viewed as a method for maximising the configura-

Ž .tional probability P S , thereby acting as a type of
Bayesian pattern reconstruction process.

It may be of some interest to discuss how our
Bayesian framework relates to the storage capacity

Ž .result derived by Chiueh and Goodman 1991 . At
this point our analysis will be rather informal; a
more rigorous discussion concerning the storage ca-
pacity of the ECAM will be presented in Section 5.
Consider an input pattern S that is k bits away from
the nearest memory pattern from which S is assumed
to be derived through a process of memoryless bit
corruption. Let kskN, where k is the fraction of
incorrect bits in the pattern S, and define k

X as k

1 Ž .q . Chiueh and Goodman 1991 showed that whenN
X Ž 2 .y1k 0 1qa the asymptotic storage capacity of

the ECAM is the largest possible for an associative
Ž .memory, as determined by Chou 1988 . Observe

that, under our memoryless corruption assumption,
the bit-error probability p represents the expected
fraction of incorrect bits in any input pattern, and is
therefore intimately related to the parameter k de-
fined above. Specifically, k is the actual realisation
of a random variable whose expected value is p.

Ž .Now, from Eq. 14 , we obtain

y12ps 1qa 15Ž . Ž .

X 1 2 y1Ž .and thus p 'pq ) 1qa for all N, whichN

means that Chiueh and Goodman’s condition for
meeting the largest possible capacity is expected to
hold, at least in a statistical sense. We can therefore
conclude that our Bayesian framework naturally leads

Žto a choice of the exponentiation base a which is on
.the average the best possible: it allows us to achieve

the ultimate upper bound for the asymptotic storage
capacity of an associative memory.

The control of the bit-error probability is an im-
portant issue for configurational optimisation by gra-
dient ascent. One strategy which is suggested by our
analogy with Gibbs distributions is to exert control
via a deterministic schedule similar to temperature

Ž .annealing Geman and Geman, 1984 . In other words,
we would reduce the exponential constant towards
zero according to a predefined annealing schedule
with each time step of associative recall. However,
unlike the temperature of an annealing schedule, the
bit-error probability has a direct physical meaning in
terms of our pattern model: it is related to the
Hamming distance between the network configura-
tion and the actual pattern to have undergone corrup-
tion. If we assume that the actual pattern is that
closest to the network configuration, then we can
form the following estimator for bit-error probability

min Hms1, . . . ,Z m
ps . 16Ž .

N

In this way the relaxation scheme can adjust to the
prevailing error conditions on the network. In Sec-
tion 5 we will present a model of the underlying
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pattern space which allows us to understand how the
conditions on the network change after iterative ap-
plication of the configurational relaxation method.

4. Bayesian interpretation of the Hopfield net-
work

We are now interested in comparing our update
rule with its counterpart for the Hopfield network

Ž .model Hopfield, 1982 . This network consists of an
arrangement of nodes in which the inter-nodal con-
nections are characterised by continuous-valued
weights which store the training patterns. If w isi j

the interconnection weight between the nodes in-
dexed i and j, then the network optimises the crite-

Ž .rion C S sÝ w s s , provided that the weightsi, j i j i j

are symmetric, i.e., w sw . Training is frequentlyi j ji

performed using the following Hebbian learning rule:

Z1
m mw s l l . 17Ž .Ýi j i jN

ms1

By contrast with our exponential probability crite-
rion, the Hopfield network effectively minimises a
quadratic function of the Hamming distances. Oper-
ating in pattern recall mode, the network performs

Ž .gradient descent on C S with stepsize proportional
Ž .to H . From Eq. 4 , the rule for updating them

discrete node variables can be written as

Z 2 Hmms ssgn l 1y . 18Ž .Ýj j ž /½ 5N
ms1

This clearly differs from the update rule for configu-
rational relaxation in that it is linear in Hamming
distance rather than exponential.

Under conditions in which a is close to unity, the
Ž .exponentials appearing in Eq. 12 can be approxi-

mated in a linear way using the Taylor expansion
with the result

Z
ms ssgn l 1y 1ya H q PPP . 19Ž . Ž .Ýj j m½ 5

ms1

This is identical to the Hopfield dynamical rule when
2

as1y . The Hopfield approach can therefore beN

regarded as a valid approximation to configurational
1relaxation when p, . Later on we will comment2

on the meaning of this observation in terms of the
structure of the pattern space in which we are operat-
ing. At this point we will simply note that in the

1limit when ps , the update rule becomes s sj2

� Z m4sgn Ý l . This means that the update decision isms1 j

completely devoid of the contextual information con-
veyed by the global pattern configuration; it means
that each node is assigned its most frequent value
from the set of training patterns. In other words, the
Hopfield memory only draws extremely weakly upon
the available contextual information.

Before proceeding, it is worth considering the
limit of the relaxation approach when the bit-error
probability p is close to zero. In this case the update
rule simply selects the bit corresponding to the pat-
tern which is closest in Hamming distance to the
configuration of the network, i.e.,

s sl m , such that H smin H . 20Ž .j j m ns1, . . . ,Z n

This update rule is close in spirit to the operations
performed by the class of Boolean networks pro-

Ž .posed by Aleksander 1989 which have been thor-
Ž .oughly analysed by Wong and Sherrington 1989 . In

this type of network the binary node values are used
to construct an address to a memory location which
contains an update value. This type of system could
clearly handle the minimum Hamming distance crite-
rion described above. We mention that Rohwer
Ž .1995 has recently performed a more detailed
Bayesian analysis of a related Boolean n-tuple
recognition model.

5. The Hamming distance picture

Both configurational relaxation and the Hopfield
memory use functions of Hamming distance as the
basis for node update decisions. To understand how
the two approaches compare, it is instructive to study
how the Hamming distance is distributed for realistic
pattern classification problems. The distribution has
two components. The first reflects the effect of noise
corruption on perfect patterns producing departures
from zero Hamming distance. The second is due to
the distribution of Hamming distance between the
different stored patterns – we refer to this as the
inter-pattern Hamming distance.
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Consider a noise corrupted pattern indexed n . If
the bit corruption is memoryless, then the Hamming
distance to the true uncorrupted prototype of this
pattern is equal to the number of bit-errors. In this
case H follows the binomial distribution:n

N ! Ny ttP H s t s p 1yp . 21Ž . Ž . Ž .s n Ny t !t!Ž .

To describe the Hamming distribution between
the competing stored patterns requires a model of the
structure of the pattern space. The basic assumption
is that the patterns are random bit patterns. Actual bit
values at different configuration sites can be treated
as independent events occurring with a uniform
probability distribution. According to this model the
high and low bits are assigned with probabilities q
and 1yq, respectively. The probability that the bits
on the same configuration site of any two patterns

Ž .disagree is rs2 q 1yq . It is easy to show using
the independence and uniformity assumptions that
the probability distribution for the inter-pattern Ham-
ming distance is again binomial with mean Nr and

Ž .variance Nr 1yr :

N ! Ny ttP H s t s r 1yr . 22Ž . Ž .Ž .b m Ny t !t!Ž .

In what follows we will confine our attention to the
case when the binary labels occur with equal proba-

1bility, i.e., rs .2

We can regard pattern recovery as the task of
Ž .locating the signal distribution P H s t above as n

Ž .competing background process P H s t . Irrespec-b m

tive of how the node updates are made, success can
only be anticipated if the overlap between the two
distributions is small and the signal distribution is
not swamped by background.

At this point it is interesting to note that the
Hopfield and configurational relaxation approaches
become computationally equivalent under the worst
possible case for successful pattern recovery. This is

1the case when p, , which corresponds to the case2

of signal and background having identical mean
Hamming distance.

The two-component model described above al-
lows us to view the ECAM as a decision rule in the
measurement domain of Hamming distance. A simi-
lar framework for studying the dynamical behaviour

of associative memories has already been explored
Ž .intuitively by Kanerva 1988 and has been formal-

Ž .ized by Wong and Sherrington 1989 . We are inter-
ested in using this picture to understand how the
bit-error probability evolves with the iterative node
update process. The first step towards meeting this
aim is to use the signal and background Hamming
distributions to compute the probability that any
single stored pattern has a Hamming distance smaller
than that for the correct pattern which is indexed n ,

Ž .i.e., P H (H . This goal is achieved by perform-m n

ing a discrete convolution of binomial distributions
Ž . Ž .given in Eqs. 21 and 22 ,

P H (HŽ .m n

N t

s P H s t P H su . 23Ž . Ž .Ž .Ý Ýs n b m

ts0 us0

If we confine our attention to the case when the
1binary labels occur with equal probability, i.e., rs ,2

Ž .then with the binomial forms of P H s t ands m

Ž .P H su we obtainb m

P H (HŽ .m n

Ny ttN t1 N !p 1yp N !Ž .
s .Ý ÝN Ny t !t! Nyu !u!2 Ž . Ž .ts0 us0

24Ž .

We are interested in rearranging this series to obtain
a polynomial expression in p so that we can approx-

Ž .imate P H (H for small values of the bit-errorm n

probability. Performing a binomial expansion of the
first three terms in the series and collecting together
terms of order up to p2, we obtain the following
result:

P H (HŽ .m n

1
2s 1qN pN2

1
2 2q N Ny1 Ny3 p q PPP . 25Ž . Ž . Ž .

4

Our aim is to compute the probability of bit-errors
after relaxational updating has taken place. The con-
dition for error is that at least one of the Zy1
competing background patterns produces a configu-
ration with Hamming distance less than H . Then
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background patterns can be regarded as independent
events each of which has a uniform probability
Ž .P H (H of causing an error. These conditionsm n

specify a binomial distribution for the number of
potential error-producing patterns. As a result, the
probability of misclassifying the true pattern as any
of the remaining Zy1 background patterns, i.e.,
Ž .P min H (H , is equal tom m n

P p ,P min H (HŽ . Ž .error m / n m n

Zy1
s1y 1yP H (H . 26Ž .Ž .Ž .m n

Ž . Ž .Substituting Eq. 25 into Eq. 26 , and applying the
Taylor expansion for small values of p we obtain
the following expression for the bit-error probability
which applies in the vicinity of the origin:

P pŽ .error

Zy1 1
2 2 2, 1qN pq N Ny1 Ny3 p .Ž . Ž .N 42

27Ž .

The effect of performing configurational relax-
ation on the network is equivalent to modifying the
bit-error probability. This can be viewed as an itera-

Ž .tive process of the form P p ¨p. It is the fixederror

points of this iteration scheme that determine the
behaviour of the relaxation process and the feasibil-
ity of pattern recovery. These fixed points are the

Ž .values of the bit-error probability for which P perror

Ž .sp. A detailed numerical analysis of Eq. 27 re-
veals the existence of three such points; the lower
one is close to the origin, i.e., p,0, the upper one
occurs at ps1 while the third occurs at an interme-
diate value of p.

An important property of the fixed points of the
iterative scheme is whether they are convergent or
divergent. Convergent points are those towards which
the iterative scheme migrates; divergent points are
those from which it migrates. The condition for a
fixed point to exhibit the convergent property is

E P pŽ .error
-1. 28Ž .

E p Ž .psP perror

Numerical analysis reveals that the lower and upper
fixed points are both convergent while the intermedi-
ate fixed point is divergent. According to Kanerva’s
terminology, the position of the intermediate fixed
point is referred to as the ‘‘critical distance’’. As a

Ž .concrete example, Fig. 1 shows the curve P perror

superimposed on the line of unit gradient for a
configuration of 15 nodes; moving from left to right
the individual curves correspond to Zs300, 150,
50, 25, and 5 stored patterns.

The intersections of curve and line are the fixed
Ž .points of the iterative scheme P p ¨p. Forerror

successful pattern recovery the relaxation scheme
must be initialised below the intermediate fixed point
in order for the bit-error probability to monotonically

Fig. 1. Fixed points of bit-error probability.
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Ž .Fig. 2. Degeneracy property for a network with 15 nodes. The curve corresponds to the behaviour of P p with Zs73, the theoreticalerror

maximum storage capacity for a network with 15 nodes.

decrease until coming to rest at the lower fixed point.
In other words, the initial Hamming distance must be
less than the critical distance. If this is not the case,
then the bit-error probability will grow iteration by
iteration, eventually coming to rest at the upper fixed
point; this will have catastrophic results on quality of
the recovered configuration.

The Kanerva picture of associative recall has been
Ž .formally used by Wong and Sherrington 1989 to

compute the storage capacity of Aleksander’s mem-
Ž .ory Aleksander, 1989 . The basic idea is to compute

the conditions under which the lower and intermedi-
ate fixed points become degenerate. Under these
circumstances, there is no range of initial Hamming

Fig. 3. Theoretical storage capacity as a function of the number of nodes in the network.
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distance for which iterative improvement in the bit-
error probability is possible. This degeneracy condi-
tion is illustrated in Fig. 2. Following Wong and

Ž .Sherrington 1989 , the conditions for degeneracy
may be determined by approximating the polynomial

Ž . Ž .expression for P p appearing in Eq. 27 toerror

second-order in p. The fixed points are the two
solutions of the quadratic equation

2 N
21q N y pž /Zy1

1
2 2q N Ny1 Ny3 p s0. 29Ž . Ž . Ž .

4

The degeneracy condition for this quadratic gives the
following expression for the number of stored pat-
terns Z in terms of the numbers of nodes of the
network N

2 N

Zs1q . 30Ž .
2 (N "N Ny1 Ny3Ž . Ž .

In the limit of large N, the storage capacity is
approximately equal to

2 Ny1

Z, . 31Ž .2N

Fig. 3 shows a plot of this theoretical storage value
as a function of the length of memory patterns. Note
how, once N)4, the storage capacity rises exponen-
tially. It should be noted that our approach to com-
puting storage capacity is somewhat different to that

Ž .adopted by Chiueh and Goodman 1991 . Rather
than imposing a threshold on acceptable error rate,
we draw on Kanerva’s picture which attempts to
understand associative recall in terms of a critical
Hamming distance above which successful pattern
recovery is impossible. Using a simple model of the
pattern space in which the associative memory oper-
ates, we effectively compute the condition for the
critical distance to vanish. In consequence, our stor-
age result depends only upon the size of the network.
By contrast, Chiueh and Goodman’s result depends
on the prespecified error threshold. However, both
results share the common feature of being exponen-
tial in the number of nodes.

It is interesting to note that the relaxation process
Ž .has a non-zero saturated error P 0 . This corre-error

sponds to the probability of incorrectly recovering
Ž .one of the competing stored patterns. From Eq. 27 ,

this probability is equal to

Zy1
P 0 s . 32Ž . Ž .error N2

This is clearly in accordance with our intuitions;
there are Zy1 possible mistakes that can be made
in the global pattern classification process which
have to be drawn from a configuration space of 2 N

possibilities. The existence of this saturated error
means that if the relaxation scheme is initialised with
an unrealistically low bit-error probability, then it
will be attracted upwards in value to the lower fixed
point.

6. Conclusions

We have demonstrated how Chiueh and Good-
man’s ECAM model can be entirely derived within a
Bayesian framework, and can therefore be inter-
preted as performing a type of Bayesian pattern
reconstruction process. The basis for this work has
been a novel relaxation scheme developed in the
context of pattern recognition and computer vision,
which involves direct probabilistic modelling of the
pattern corruption process. We have additionally
shown that the Hopfield memory can be given a
Bayesian interpretation, too. Viewed from the stand-
point of a pattern space model, this interpretation
corresponds to the case when the probability of
individual bit-errors on the network is approximately
1 . In terms of pattern recovery this is almost the2

worst possible case; it corresponds to complete over-
lap between the Hamming distance distribution for
corrupt and competing stored patterns. In the limit of
small bit-error probability our relaxation scheme be-
comes equivalent to the Boolean network proposed
by Aleksander.

Based on a simple model of the pattern space
Ž .suggested by Kanerva 1988 , we have theoretically

explored the behaviour of the bit-error probability
under iterative node updating. This leads us to sev-
eral conclusions. Firstly, the ECAM iterative scheme
has convergent fixed points for values of the bit-er-
ror probability close to zero and unity. A further
interesting property is that the model has a saturated
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error which originates from the effect of interpattern
competition. Finally, the ECAM approach is com-
pletely inoperable when its fixed points become de-
generate. This degeneracy condition led us to derive
an expression for the storage capacity of the model
which turns out to be exponential in the number of
nodes in the network. A similar result was also

Ž .derived by Chiueh and Goodman 1991 but, in
contrast with theirs, our result does not depend on an
adjustable parameter which affects both the bit-error
probability and the storage capacity of the model.

A number of alternative network models have
recently been proposed which use exponential re-
sponse computational units as their basic building

Žblock Jeng et al., 1990; Wang and Don, 1995;
Wang and Lee, 1995; Chiueh and Tsai, 1993; Geva

.and Sitte, 1991 . As a matter of future investigation,
it would be interesting to exploit the configurational

Žrelaxation approach described in this paper or sim-
.ple variations thereof in an attempt to provide these

models with a Bayesian interpretation. This would
allow us to better understand some of their funda-
mental dynamical properties.
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